Numerical Integration and Monte Carlo Integration

نویسنده

  • Anders W. Sandvik
چکیده

Here we will begin by deriving the basic trapezoidal and Simpson’s integration formulas for functions that can be evaluated at all points in the integration range, i.e, there are no singularities in this range. We will also show how the remaining discretization errors present in these low-order formulas can be systematically extrapolated away to arbitrarily high order; a method known as Romberg integration. Multi-dimensional integrals can be calculated ”dimension-by-dimension” using these one-dimensional methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite-Dimensional Monte Carlo Integration

In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers and a a particular Monte Carlo method numerically computes the Riemann integral. Whereas other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integral...

متن کامل

A Random Number Based Method for Monte Carlo Integration

A new method is proposed for Monte Carlo integration. This method is more efficient with wider coverage, including improper integrals, while the classical Monte Carlo integration can only handle bounded domain integrals. To implement this method in computer programming, you only need a random number generator. Unlike the deterministic numerical integration methods, the expected error of this me...

متن کامل

Numerical integration in logistic-normal models

When estimating logistic-normal models, the integral appearing in the marginal likelihood is analytically intractable, so that numerical methods such as GaussHermite quadrature (GH) are needed. When the dimensionality increases, the number of quadrature points becomes too high. A possible solution can be found among the Quasi-Monte Carlo (QMC) methods, because these techniques yield quite good ...

متن کامل

Quasi-Monte Carlo Integration on GRIDS: Using Blocked Substreams

The splitting of Quasi-Monte Carlo (QMC) point sequences into blocks or interleaved substreams has been suggested to raise the speed of distributed numerical integration and to lower to traffic on the network. The usefulness of this approach in GRID environments is discussed. After specifying requirements for using QMC techniques in GRID environments in general we review and evaluate the propos...

متن کامل

FiEstAS sampling -- a Monte Carlo algorithm for multidimensional numerical integration

This paper describes a new algorithm for Monte Carlo integration, based on the Field Estimator for Arbitrary Spaces (FiEstAS). The algorithm is discussed in detail, and its performance is evaluated in the context of Bayesian analysis, with emphasis on multimodal distributions with strong parameter degeneracies. Source code is available upon request.

متن کامل

Quasi - Monte Carlo Methods in Computer Graphics

The problem of global illumination in computer graphics is described by a Fredholm integral equation of the second kind. Due to the complexity of this equation, Monte Carlo methods provide an efficient tool for the estimation of the solution. A new approach, using quasi-Monte Carlo integration, is introduced and compared to Monte Carlo integration. We discuss some theoretical aspects and give n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015